CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS Quantum Physics I1

9.8 Orthogonality theorems

We have just seen that if we know a systems irreps we can use them to block diagonalize a
Hamiltonian. But we still don’t have all the theoretical tools we need to identify irreps in the
first place. We will set some of these out in this subsection.

9.8.1 Grand Orthogonality Theorem

We are now in a position to state the grand orthogonality theorem. Similarly to how the
orthogonality of eigenstates of a Hermitian operator allows you to find a single eigenstate and
then identify other eigenstates by construction, we will see that this theorem allows us to take
one irrep and identify others by this orthogonality constraint.

We can think of irreducible representations as giving "vectors of matrices" ([R(g)]ij)gec in
a vector space of dimension |G|. The Grand Orthogonality Theorem provides orthogonality
relations between these vectors. Let me start by stating the theorem in its full glory:

Theorem 9.8.1 (Grand Orthogonality Theorem). Let R, and Ry be two non-equivalent unitary
irreducible representations of a ﬁmtﬂ group G of order N. Let n, and ny be the dimensions of
the vector space for R, and Ry. Then the grand orthogonality theorem states that

% 3 [Ro(0) D (R = B (9.53)
ge

The grand orthogonality theorem is a consequence of Schur’s lemma, for a derivation see Ap-
pendix [0.13]

Now let me try and unpick it a little for you. Let’s first consider the case of two non-equivalent
irreps (i.e, a # b). Then the grand orthogonality theorem implies that the vectors of matrices
corresponding to any two non-equivalent irreps are orthogona@ In particular, we have

ZG[Ra(g)T]jk[Rb(g)]lm = 0,V a+b,Vi,j kL. (9.54)

Next let’s consider the case where a = b so that we’re just looking at the properties of a single
irrep. In this case we firstly have an orthogonality relation between the elements of the irreps

%[RQ(Q)T]M [Ra(9)];, = 0if j+mand/or l#k. (9.55)
ge

Finally, the grand orthogonality theorem provides a normalisation condition for these vectors in
the case where j =m and [ = k. Concretely, we have

S [Bu@) 1 [Ra(@)]g; = (9.56)

geG Na

where N is the order of group G and n, is the dimension of the vector space of representation
R,.

9The theorem can also be generalized to compact Lie groups.
20Note, that in fact the condition the Grand Orthogonality Theorem imposes is stronger than simply the
orthogonality of these vectors. That would be the claim that ¥, Ra(9)"Ry(g) = 0 which is equivalent to

Yo ¥;[Ra(9) 15[ Ro(g) ]k = 0 for all 4 and k. This is implied by Eq.(9.54) but Eq.(9.54) is stronger.
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Examples. As ever, let us try and make this a little less abstract by considering some exam-
ples. Let us start with the Zs group. It is Abelian so its irreps are one-dimensional. Specifically,
we have:

Rl(e) = 1,R1(CL) =1 (957)
Ry(e) =1,Ry(a) =-1. (9.58)

As these are one-dimensional irreps we can drop the subscripts j, k,1,m in Eq. (9.54) and have:

S Ri(9)"Ra(g) = Ri(e) Ra(e) + Ri(a) Ra(a) =1 x 1+ 1x (1) =0 (9.59)
g

in agreement with Eq. (9.54)). Similarly,

ERI(Q)TRI(Q) =1x1+1x1=2
g

ZRZ(Q)TR2(9) =1x1+-1x(-1)=2. (9.60)

As the order of the group is 2 (N = 2) and the dimension of the irreps are 1 (n4 = 1) this agrees
with Eq. (0.50).

As a less trivial example, let’s consider C3v. Remember, this consisting of two rotations (clock-
wise and anti-clockwise) and three reflections (on each axis). A possible irreducible representa-
tion @ are the following six real matrices:

(o)

_1 _\V3 _1
=\ _1)e={_s A (9.61)
2 2 2 2

Let us consider an example of the normalisation condition first:

1\? 1\? 1\? 1\? 6
S RY(g9)uR :12+12+(—-) +(——) +(——) +(——) =3=_.
Z (9)11R(g)11 5 5 5 5 5

which satisfies Eq. (9.56)) as the order of the group is 6 (N =6) and the dimension of the irrep
is 2 (n4 =2). Now let’s demonstrate the orthogonality of the (1,1) and (2,2) elements:

ot e ()3 () () (-0

It is straightforward to verify the orthogonality of the other elements.

A direct consequence of the grand orthogonality theorem is that

Proposition 9.8.2. A finite group can only have a finite number of inequivalent irreducible
representations. Specifically, the maximum number of possible irreps is given by the order of the
group.

21We will discuss how to check that this is indeed an irrep and discuss other irreps of C3v in Section m
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This is clear from the orthogonality theorem. Thinking of irreducible representations as giving
"vectors of matrices" ([R(g)]ij)gec in & vector space of dimension |G|, the theorem tells us that
those vectors must be orthogonal. But there are at most |G| orthogonal vectors in a vector space
of dimension |G|, and so the number of irreducible representations must be finite. In fact, we
will calculate the number of irreducible representations for any finite group explicitly when we
introduce characters.

9.8.2 Group averaging (twirling)

You may have noticed that the grand orthogonality theorem looks a lot like an average of an
object under the adjoint action of the group. To see this consider the quantity:

(X)a = - 3 R(9)XR(g)'. (962)
g

For example, if R(g) = U, is a unitary representation then this is just the average output of X
after being evolved by each unitary U, in the group,

(X)q = % S U, XU (9.63)

If this representation is irreducible then we can apply the grand orthogonality theorem to get
the following Irrep Group Averaging Corollary:

(X)a=+ ; D TR(9) im Xoms [R(9) 1) (]

jklm g

> 01k jm Xomj|1) (K|

Jklm (9.64)

1

where n, = d is the dimension of the vector space of the representation.

Let’s consider the group average of the single qubit Pauli group G' = {+(%)0,, £(i)0y, £(i)0,, =(i) 1}
over an arbitrary single qubit initial state p. This is an irreducible representation onto a d = 2
vector space and so from Eq. (9.64)) we should have

(Pl =35 - (9.65)

That is, averaging the effect of applying each of the Paulis on a given state gives a maximally
mixed state.

If it helps to make this less abstract and mysterious we can also compute (p)g explicitly. To
do so we first note that in each term of the form ngUgJ,r the +1, -1, +4, —i signs cancel out, i.e.
(io,)p(—io,) = 0,po,, and so we can write

1
(p)a = Z(gxpaz +0ypoy +0,p0, + 1pl). (9.66)
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If we write the state in terms of its Bloch vector, p = %(I +7.0) and remember the properties of
Pauli matrices (e.g. 0;050; = —o; for i # j but a? = 0;) then we have

1 1 Ty Tz Tz Tx 1
(p)g = 3 I+ NN RN NI 5], (9.67)
Tz Tz Tz Tz

in agreement with Eq. (9.65)

All this discussion of orthogonality theorems so far (i.e., both the grand orthogonality theorem
and the group averaging corollary) has been framed for finite groups; however, it also carries over
to compact (i.e. closed and bounded) Lie groups. And all the continuous groups we normally
care about U(n), SU(n), O(n), SO(n) etc are compact. In this case the finite average sum % >y
becomes a continuous integral over a uniform measure [ du(g). This uniform measure is called
the Haar measure and the average is called Haar averaging - it’s exact form and properties are
beyond this course but I highly recommend tthis blog or this review. In any case, for continuous
groups the average over irreducible representations is given by:

(Xai= [ du()Un(9)XU(9)! = 2 THX]1. (9.65)

The operator [ du(g)Us(g)...Us(g)T is sometimes called the twirling operation@

For example, if you apply random unitaries to a single qubit state and then average the states
you get out you will end up with the maximally mixed state. Note you effectively saw this in the
decoherence problem sheet - but then I was nice and made the calculation simpler and had you
just average over a mix of rotations around the o, and o, axes rather than arbitrary unitaries.

If you think back to the decoherence problem sheet you’ll remember that if you only averaged
over R,(0) = e”"7= rotations then you ended up not at the maximally mixed state but on
projecting the state onto the Z axis. How can we understand this?

The first thing to note is that we cannot directly apply Eq. because that only holds for
irreps and R.(6) = e"7= is not an irrep. To see this note that here we are considering U(1)
which is an Abelian group and so all its irreps are 1D. So we need a generalization of Eq. ((9.68)
for reducible representations.

Any reducible unitary representation can be written in the form

U(g) =D U:(9) - (9.69)

Let us consider a basis By = {|z, i)};.ijl for each subspace x of dimension d,. Therefore, U, B, is
a basis for the full space (i.e. on which U(g) acts) and we have

ds
U(g) =@ U(9) = ) ‘Z_I(Um(g))i,j i) (. 4] (9.70)

where (U(g)):; is the component (i,7) of U(g) with respect to the elements of B, i.e.
(Uz(9))ij = (z,i|U(g)|z,j). Let us repeat the calculation in Eq. (9.64) but this consider a

22Tn a quantum information context it is such standard terminology that I thought everyone called it this.
However, apparently not... which lead to a few awkward conversations before I realised this.
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reducible representation written as in Eq. (9.70). Again we’ll do this calculation for a finite
group but it generalises to continuous groups. Thus if we use the grand orthogonality theorem
to repeat the calculation in Eq. (9.64) we find:

(X)a =+ 2 U@)XU(9)!

fI,‘

dyr
—ZZ > > (Ua(9))is (s 31X 12", kY (U (9) e, i) ]

g zx'i,5=1k,l=1
d d

> X[ K e ] S U () (U(9)i
=1 g

1k

2

M

<M

zx' 1,j

_O4er %%k
S
xT

(9.71)

&|H

%
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&|H

zj

=
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d
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> (1 X, g)|w, i)z, il
J=1

=1

X

X
1I

Tr[dxX ] I

€T

where II, is the projector onto subspace = and I, is the identity in this subspace (dim(I,) = d,
and dim(II,) = dim(X)). The grand orthogonality theorem is used in the fourth equality, we
perform the sum over ¢ in the fifth inequality by introducing II,, then we recognise a trace over
the projection on X onto subspace = (i.e. Tr[IL, XTI, ] = Tr[II,X] by cyclicity of the trace and
as I12 = II, for projector). (As a sanity check note that if we are actually looking at an irrep
then we have Il = I and Tr, = Tr and so Eq. reduces to Eq. ) Again, while I have
worked through this calculation for a finite group it also carries over to averaging over all the
standard continuous groups we are interested in.

Ok so what happens when we average a state p by R.(#) = 72?7 Well the relevant group here
is U(1) and so the irreps in this case are both 1D ({1} and {¢~*?}) and we have:

1 0 y
U= (o 5] =0+ ey (0.72)
such that IIp = |0)(0], ITI; = [1)(1] and I}, [o =1

c= @ Tr[pll;] = . Tr[pIL ]I = (0]p]0)|0){O0] + (L|p[1)[1)(1]. (9.73)
z=0,1 z=0,1

Thus as we expected (inline with Problem Sheet 5) this averaging kills off all coherence and
projects onto the Z axis. For a visualisation of the effect of twirling on the Bloch sphere see

Fig.
Exercise: What happens if you twirl a qubit state over the group SU(2) ® SU(2)?

125



Quantum Physics 11 CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS

Figure 9.6: Left: We want the average of state p = 2(]1 +7r-0) by R, (0) where 7 = (15, 1ry,72).
If we rotate p around the z-axis it goes to p’ = 2(1 +r' o) where r' = (r3,7,,7,). So if we
calculate the average it would be a density matrix with a vector in the Block sphere equal to
(0,0,7,) which is along the z-axis. Right: And when we have all Pauli matrices, it will be an
arbitrary rotation So the state p = ;(]l +7-0) rotates and goes to p” = ;(]1 + 7" - o) where

r' = (rl ] Ty r)) is another arbitrary vector. Then the average is a density matrix with vector
zero in the Block sphere.

9.8.3 Petit Orthogonality Theorem.

We just saw that the grand orthogonality theorem is effectively an orthogonality relation between
"vectors of matrices" ([R(g)]ij)gec- We will now consider the petite orthogonality theorem, its
simpler corollary, which is an orthogonality relation between vectors composed of their traces
(xr(9))gec where we have defined

xr(g) = Tr[R(g)]. (9.74)

We further note that Tr(R(x)") = x ().

Theorem 9.8.3 (Classes & Traces). In a representation R, all the elements which are in the
same comjugacy class have the same trace.

Demo. If there exists u such that z = u~!yu then

Te(R(x)) = Tr(R(u™'yu)) = Te(Ru™)R(y)R(w) = Tr(R(w)R(u™)R(y)) = Tr(R(e)R(y))
= TH(R(y)) (6.75)
O

From the Grand Orthogonality Theorem, we find

Sy e ~ LR OUMEAOITEDY Nxa(g)Xb(g) 5ab25]k5jk Nadab (9.76)
Jjk geG geG

where in the final line we use the fact that Zj oy 0 k0K = Z??::l ;i = ngq. Thus we see that the
vectors of traces of two irreps are orthogonal. Or more formally:
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Figure 9.7: Motivational cat. Here’s also a link to one of my favourite cat videos. It’s an old
one, and a slow burner (from an era pre-tiktok when videos could be more than 60 seconds).

Theorem 9.8.4 (Petit Orthogonality Theorem). Let R, and R, denote two non-equivalent
unitary irreducible representations of a finite group of order N, we have

%XZ(Q)XI)(Q) = Néap (9.77)

As elements in a conjugacy class have the same trace, one can equivalently write the petit
orthogonality theorem by summing over the number of the conjugacy classes, i.e. we have

Nc
Z nuXZ(C,u)Xb(CM) = N(Sa,b (9-78)
p=1
where n,, denotes the number of elements in class p and N, is the total number of conjugacy
classes.

For example, in the case of C3v we have three equivalent classes: {e},{c;,c_}, and the three

mirrors {o,0”,0"}. We see in Eq. (9.61) that x(e) = 2, x(¢;) = x(¢_) = -1 and x(0) = x(c') =
x(¢") = 0. Thus, in line with Eq. (9.78)), we have 1 x 22 +2x (-1)2+3x 0? = 6.

We stress that we can interpret this theorem as an orthogonality relation of N, (the number of
representations) vectors in a space of dimension N, (the number of equivalent classes). Indeed,
for any representation a we can define the (N.-dimensional) vectors:

[la)]u = \/%XQ(C“) for p=1,...,Ne. (9.79)

There are N, of these vectors for the N, different irreps. It follows from Eq. that this set
of N, vectors are all orthogonal. Since the maximum numbers of orthogonal vectors is N., we
have

N, <N.. (9.80)

That is, the number of representation is smaller or equal to the number of conjugation classes.
This is the first step towards proving Lemma m (i.e. that the number of irreps is equal
to the number of conjugacy classes) which we stated without proof earlier. In turns out this
bound is tight (this is another consequence of the Grand Orthogonality Theorem - for a proof
see Vincenzo Savona’s notes on page 37) leading to Lemma
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9.9 Characters

We saw above that the traces of a representation of a group are useful. The set of traces associ-
ated with a representation are known as the character of the representation. Characters provide
an elegant and systematic approach to analyzing and categorizing irreducible representations,
as well as ascertaining the reducibility of a specific representation.

Definition 9.9.1 (Character). The set of all traces {xr(g)} is called the character of the
representation R.

As we saw above, two equivalent representations have the same character. Indeed if Ra(g) =
SR1(g)S™!, then using the cyclic property of the trace we have Tr[Ra(g)] = Tr[SR1(g)S™'] =
Tr[R1(g)]. In fact this is a sufficient condition as well:

Theorem 9.9.2 (Characters of Irreps). Two irreps are equivalent if and only if they have the
same character.

Demo. We already proved that the condition is necessary. To prove it is sufficient we reason by
contradiction. Assume two irreps R; and Ry are not equivalent but have the same character.
Then using the petit Orthogonality theorem, we find that the sum of (modulus of) trace squared
should be zero, which is impossible as the norm squared is positive and non-zero (the identity
conjugacy class has trace 1). O

Or, turning it around, different (non-equivalent) irreps have different characters.

Using this approach, we can now compute degeneracy numbers for representations, that is
compute how many copies of an irrep a given reducible representation contains. We first write:

R(g) = R11(9) ® R12(9)..-® R1p,(9) ® R2.1(g9) ® R22(9)--- ® R2p,(9) - = ®apRa(g) (9.81)

where x = 1,...,b, with b, denoting the degeneracy number. The question is how to find b,7?
Using the characters of each irreps, we know that:

Ri1(g) 0 0 0
0 0 0
XR(g) =Tr 0 0 Rl,b1 (g) 0 N i ZbaTr[Ra(g)] = Z baXa(g) . (982)

0 0 0 R21(9)

As the trace of all representations within the same conjugacy class are the same we can equiva-
lently write

XR(C;L) = Z baXa(C,u) . (9'83)

We can combine this expression with the petite orthogonal theorem to find an expression for b,,.
To do so we multiply by n,x;(C,) , where n, is the number of element in class C,, and sum
over classes

Nc
> 1 2 baXi (Cu)xa(Ch) (9.84)

p=1 a

Ne¢
Zba Z nuXZ(C,u)Xa(Cp) = EbaN(Sa,b = Nb, (9.85)
a p=1 a

Ne
>~ X3 (Cu)Xr(C)
p=1
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so that
1 3
= Z 1 Xa (Cr)XR(Cp) - (9-86)

We thus now have a formula for each number of irreps contained in a given representation:

Theorem 9.9.3 (Computing Degeneracy). Assume a decomposition in irreps as

R(g) = @42 Ra:(9) (9.87)

forx=1,....b,. Then we have

> Xa (Cu)xr(C) (9.88)

2|H

Remember this formula! It will be very useful in the problem sheets this week.
Another interesting consequence of the petite orthogonal theorem is the following one:

Theorem 9.9.4 (Sufficient condition for irreps). A necessary and sufficient condition for a
representation R to be an irrep is that

N,
Z_:lnu|X(Cu)|2 =N (9.89)

Demo. Using Eq.(9.83)) and the petit orthogonality theorem (Eq.(9.78))), we find that

Ne
> mulx(Cu)l? = 3 bibs Z 1uXi(C) X (Cu) = N Y bibjdi; = NZb2 (9.90)
p=1 Y] p=1 ]

Being irreducible means having only one of the b;=1, which proves the theorem. O

For a finite group, it is easy to find the characters listed in table in the literature (google is your
friend!), listed as follows:

irrep\ class | Ci(e) Cy Cs Cy Cs
R, 1 1 1 1 1
Ry d> x2(C2) x2(C3) x2(Ca) x2(Cs)
Rs d3  x3(C2) x3(C3) x3(Cs) x3(Cs)
Ry di xa(C2) xa(C3) xa(Cs) x4(Cs)
Rs ds  x5(C2) x5(C3) x5(Cs) x5(Cs)

Again, that was quite lot of quite technical material. And we’ve got more to come. So here’s a
panda (Fig. And if fluffy animals aren’t your thing here’s a clip of two guys trying to kayak
down a melting ski slope.
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9.9.1 Example with C3v.

Ok we now finally have the tools to put everything together and show how orthogonality rela-
tions can be used to identify irreps.

Let us again consider the C3v group, i.e. symmetry of the triangle. We first recall that it is a non-
Abelian group of order 6. The conjugacy classes are C. = {e},C} = {c4,c_} and Cy = {0,0",0"}
and so, as we saw before, from Lemma (9.7.2)) there can be only 3 irreps.

We saw the 2D irrep in Eq. (9.61]):

1B 1B
R(c+>=(¢§ 3),R(c_):( 3 21) 091)
2 T2 T2 T2
10 1 V3 1 3
ro) = () >(@ _2l),R<a">=(_@ )
2 2 2 2

There we simply claimed that this was an irrep. Now we can use Theorem to check.

Namely we have,
Ne
Z”u|X(Cu)|2=1X22+2X(_1)2+3x0=6=N- (9.92)
p=1

What are the other irreps? We can of course have the trivial irrep where every group element
is represented by a scalar equal to one. The trivial 1D irrep:
R(e)=1,R(cy)=1,R(c-)=1,R(c)=1,R(¢") =1,R(c") =1 (9.93)
(This is indeed an irreducible representation as 1+2x 1+ 3 x 1 =6 in line with Theorem .
Now to identify the missing irrep. From Burnside’s Lemma we know that it has to be 1D

(i.e, 12+ 22 +1? = 6 implies | = 1). From the petit orthogonality theorem we know that the
characters of this final representation must be orthogonal. Thus denote the characters of the

Figure 9.8: Motivational Panda. Even if you're struggling a little to follow by this point
you're still doing better than this panda. (God knows how these animals survive in the wild).

130



CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS Quantum Physics I1

missing representation as (Xea Xeyr Xer Xos Xos Xcr) we have (17 1,1,1,1, 1)‘(X67 Xes Xey Xos Xos XU) =
Xe +2Xc+3X0' =0 and (27 _17 _17 07 07 0)'(X87 Xes Xes Xos Xos XO') = 2X8 _2XC = 0. Thus we have Xe =
Xc and Yo = —Xe- The only 1D representation that satisfies these conditions and Lemma ((9.7.2)

is thus:
R(e)=1,R(c;)=1,R(c.)=1,R(0) =-1,R(¢") =-1,R(c") = -1 (9.94)

(Check for yourself that this is indeed an irrep for C3v!)
Thus for the character table for the group C3v we have Table

‘ e 2C3 3oy,
A |1 1 1
Ay |1 1 -1

E |12 - 0

Table 9.1: Character table for point group C3v. Here A1 and A2 deontes the 1D representation
in Eq. (9.93) and Eq. , and F denotes the 2D representation in Eq.(9.61)).

Figure 9.9: Note that in the above example we could get away with just studying the characters
and the petite orthogonality theorem to identify our irreps. However, in general the characters
will not suffice and you’ll have to have already identified some non-trivial irreps and then can
use the grand orthogonality theorem to help you identify the remainders. That said, even in this
case knowing the character at least helps you guess the diagonal of your irrep. Credit: Mehdi
Haddad.
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